
Classifying and Understanding Financial Data
Using Graph Neural Network

Xiaoxiao Li1∗ Joao Saude 2 Prashant Reddy 2 Manuela Veloso2

1Yale University
2J.P.Morgan AI Research

Abstract

Real data collected from different applications usually do
not have a pre-defined data model or is not organized in a
pre-defined manner. Analyzing messy, unstructured data and
extracting useful data information is difficult. For the data
collected in financial institutions, usually, it has additional
topological structures and is amenable to be represented as
a graph. For example, social networks, communication net-
works, financial systems, and payments networks. The graph
structure can be built from the connection of each entity, such
as financial institutions, customers, or computing centers. We
consider how the different entity influences each other’s la-
bel through a label prediction problem based on the graph
structure. Given the structured data, Graph Neural Networks
(GNNs) is a powerful tool that can mimic experts’ decision on
node labeling. GNNs combine node features through graph
structure by using a neural network to embed node informa-
tion and pass it through edges in the graph. We want to iden-
tify the informative interaction in the input data used by the
GNN model to classify the node in the graph and examine if
the model works as we desire. However, due to the complex
data representation and non-linear transformations, explain-
ing decisions made by GNNs is challenging. In this work, we
propose graph representation methods for finical transaction
data and new graph features’ explanation methods to iden-
tify the informative graph topology. We use four datasets (one
synthetic and three reals) to validate our methods. Our results
demonstrate that graph-structured representation help to ana-
lyze financial transaction data, and our explanation approach
can mimic patterns in human interpretation and disentangle
different features in the graphs.

1 Introduction
In recent years, with the rapid development of new tech-
nologies such as big data, cloud computing, and artificial
intelligence, these new technologies are deeply integrated
with financial services, releasing financial innovation vital-
ity and application potential, which has greatly promoted
the financial industry. In this development process, big data
technology is the most mature and widely used. However,

∗This work was done at J.P.Morgan AI Research
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

faced with such a vast information ocean, especially unstruc-
tured data information, how to store, query, analyze, mine,
and utilize these massive information resources is particu-
larly critical. Traditional relational databases are mainly ori-
ented to transaction processing and data analysis applica-
tions. They are good at solving structured data management
problems. There are some inherent shortcomings in manag-
ing unstructured data, especially when dealing with massive
unstructured information. In response to the challenges of
unstructured data analysis, one strategy is transforming un-
structured data to structured data, which will help similar
information labeling, retrieving, searching, and clustering,
and it will help finance better serve the real economy and
effectively promote the overall development of the financial
industry.

Our contemporary society relies heavily in interper-
sonal/cultural relations (social networks), our economy is
densely connected and structured (commercial relations, fi-
nancial transfers, supply/distribution chains), the geopoliti-
cal relations are also very structured (commercial and polit-
ical unions), we also rely on transportation networks (roads,
railroads, maritime and flight connections), and our cy-
bersystems are also structurally connected (computers net-
works, internet). Moreover, those complex network struc-
tures also appear in nature, on biological systems, like the
brain, vascular and nervous systems, and also on chemi-
cal systems, for instances atoms connections on molecules.
Nowadays, with modern technologies we collect data from
all the above systems and their relations since this data
is hugely structured and depends heavily on the relations
within the networks, it makes sense to represent the data as
a graph, where nodes represent entities and the edges the
connections between them.

Artificial intelligence is becoming a new direction for
financial big data applications. Graph Neural Networks
(GNNs) such as GCN (Kipf and Welling 2016), GraphSage
(Hamilton, Ying, and Leskovec 2017), is a kind of deep
learning architectures that can handle graph-structured data
by preserving the information structure of graphs. Our pri-
mary focus is the node labeling problem, such as fraud de-
tection, credit issuing, customer targeting, social network
user classification, which can mimic experts’ decisions on

Figure 1: We can build graph structure for transaction system and try to understand what interaction patterns are informative
for fraud detection using GNN and explaination methods.

node labeling. GNNs are able to combine node features,
connection patterns, and graph structure by using a neural
network to embed the node information and pass it through
edges in the graph. However, due to the complex data rep-
resentation and non-linear transformations performed on the
data, explaining decisions made by GNNs is a challenging
problem. One example about understanding fraud detection
from explaining GNN node classification decision is shown
in Figure. 1. Therefore we want to identify the patterns in
the input data that were used by the GNN model to make a
decision and examine if the model works as we desire.

Although deep learning model visualization techniques
have been developed in convolution neural network (CNN),
those methods are not directly applicable to explain
weighted graphs with node features for the classification
task. A few work have been down on explaining GNN
((Pope et al. 2019; Baldassarre and Azizpour 2019; Ying et
al. 2019; Yang et al. 2019)). However, to our best knowl-
edge, no work has been done on explaining comprehensive
features (namely node feature, edge feature, and connect-
ing patterns) in weighted graph, especially for node classi-
fication problem. Here we propose a few graph feature ex-
planation methods to formulate financial data in based on
graph structure. We use three datasets (one synthetic and
two real data) to validate our methods. Our results demon-
strate that by using explanation approach, we can discover
the data patterns used for node classification correspond to
human interpretation and those explanation methods can be
used for understanding data, debugging GNN model and ex-
amine model decisions, and in other tasks.

Our contribution is summarized as follows:

1. We propose to transfer financial transaction data to
weighted graph representation for further analysis and
data information understanding.

2. We propose to use GNN to analyze financial transaction
data, including fraud detection and account matching.

3. We provide the tools to interpret informative interactions
between entities for entity labeling in the structured-graph
format.

Paper structure: In section 2, we introduce Graph repre-
sentation. Then in section 3, we walk through the operations
in GNN. In section 4, the formula of graph explanation is
described, and the corresponding methods are introduced.
In section 5, we propose the evaluation metrics and meth-
ods. The experiments and results are presented in section 6.
We conclude the paper in section 7.

2 Data Representation – Weighted Graph

For the financial data, which contains user and interaction
information, we can model each entity in the as a node
and build the underlying connection between them using
based on their interaction. In this section, we introduce the
necessary notation and definitions. We denote a graph by
G = (V, E) where V is the set of nodes, E the set of edges
linking the nodes andX the set of nodes’ features. For every
pair of connected nodes, u, v ∈ V , we denote by evu ∈ R
the weight of the edge (v, u) ∈ E linking them. We denote
E[v, u] = evu, where E ∈ R|E|. For each node, u, we asso-
ciate a d-dimensional vector of features, Xu ∈ Rd and de-
note the set of all features asX = {Xu : u ∈ V } ∈ (Rd)|V |.

Edge features contain important information about
graphs. For instances, the graph G may represent a bank-
ing system, where the nodes V represents different banks,
and the edges E are the transaction between them; or graph
G may represent a social network, where the nodes V rep-
resent different users, and the edges E is the contacting fre-
quencies between the users. We consider a node classifica-
tion task, where each node u is assigned a label yu ∈ IC =
{0, . . . , C − 1}. In the financial application, the node classi-
fication problem can be fraud detection, new costumer dis-
covery, account matching, and so on.

3 GNN Utilizing Edge Weight
Different from the state of art GNN architecture, i.e. graph
convolution networks (GCN) (Kipf and Welling 2016) and
graph attention networks (GAT) (Veličković and others
2018), some GNNs can exploit the edge information on
graph (Gong and Cheng 2019; Shang et al. 2018; Yang et
al. 2019). Here, we consider weighted and directed graphs,
and develop the graph neural network that uses both nodes
and edges weights, where edge weights affect message ag-
gregation. Not only our approach can handle directed and
weighted graphs but also preserves edge information in the
propagation of GNNs. Preserving and using edges informa-
tion is important in many real-world graphs such as banking
payment network, recommendation systems (that use social
network), and other systems that heavily rely on the topol-
ogy of the connections. Since, apart from node (atomic)
features also attributes of edges (bonds) are important for
predicting local and global properties of graphs. Generally
speaking, GNNs inductively learn a node representation by
recursively aggregating and transforming the feature vectors
of its neighboring nodes. Following (Battaglia et al. 2018;
Zhang, Cui, and Zhu 2018; Zhou et al. 2018), a per-layer
update of the GNN in our setting involves these three com-
putations, message passing Eq. (1), message aggregation Eq.
(2), and updating node representation Eq. (3), which can be
expressed as:

m(l)
vu = MSG(h(l−1)

u ,h(l−1)
v , evu) (1)

M
(l)
i = AGG({m(l)

vu, evu} | v ∈ N (u)}) (2)

h(l)
u = UPDATE(M (l)

u ,h(l−1)
u) (3)

where h
(l)
u is the embedded representation of node u on the

layer l; evu is the weighted edge pointing from v to u;N (u)
is u’s neighborhood from where it collects information to
update its aggregated message Mi. Specifically, h(0)

u = xu

as initial, and h
(L)
u is the final embedding for node u of an

L-layer GNN node classifier.
Here, following (Schlichtkrull et al. 2018), the GNN layer

using edge weight for filtering can be formed as the follow-
ing steps:

m(l)
vu = W

(l−1)
1 h(l−1)

v (message) (4)

M(l)
u =

∑
v∈N (u)

g(m(l)
vu,h

(l−1)
u , evu) (aggregate) (5)

h(l)
u = σ(W

(l−1)
0 h(l−1)

u + M(l)
u) (update) (6)

where N (u) denotes the set of neighbors of node u and
evu denotes the directed edge from v to u, W denotes
the model’s parameters to be learned, and φ is any lin-
ear/nonlinear function that can be applied on neighbour
nodes’ feature embedding. We set h(l) ∈ Rd(l)

and d(l) is
the dimension of the lth layer representation.

As the graph convolution operations in (Gong and Cheng
2019), the edge feature matrices will be used as filters to
multiply the node feature matrix. To avoid increasing the
scale of output features by multiplication, the edge features
need to be normalized, as in GAT (Veličković and others

2018) and GCN (Kipf and Welling 2016). Due to the aggre-
gation mechanism, we normalize the weights by in-degree
ēvu = evu/

∑
v∈N (u) evu. Our method can deal with nega-

tive edges-weighted by re-normalizing them to a positive in-
terval, for instances [0, 1], therefore in the following we use
only positive weighted edges and the edge weights are used
as message filtering ratio. Depending on the the problem:

• g can simply defined as: g = ēvum
(l)
vu; or

• g can be a gate function, such as a rnn-type block of m(l)
vu,

i.e. g = GRU(ēvum
(l)
vu,h

(l−1)
u).

4 Explaining Informative Component of
Graph Structures Data

Relational structures in graphs often contain crucial infor-
mation for node classification, such as graph’s topology and
information flow (i.e., direction and amplitude). Therefore,
knowing which edges contribute the most to the information
flow towards or from a node is essential to understand and
interpret the node classification evidence.

We tackle the weighted graph feature explanation prob-
lem as a two-stage pipeline. First, we train a node clas-
sification function, in this case, a GNN. The GNN inputs
are a graph G = (V, E), its associated nodes’ features, X ,
and its true nodes’ labels Y . We represent this classifier as
Φ : G 7→ (u 7→ yu), where yu ∈ IC . One advantage
of GNNs is the preservation of the information flow across
nodes as well as the data structure. Furthermore, it is in-
variant to permutations on the ordering. Hence it keeps the
relational inductive biases of the input data (see (Battaglia et
al. 2018)). Second, given the node classification model and
node’s true label, the explanation part provides a subgraph
and a subset of features retrieved from the k-hop neighbor-
hood of each node u, for k ∈ N and u ∈ V . The subgraph,
along with the subset of features, is the minimal set of in-
formation and information flow across neighbor nodes of u,
that the GNN uses to compute the node’s label. We define
GS = (VS , ES) to be a subgraph of G, where GS ⊆ G, if
VS ⊆ V and ES ⊆ E . Consider the classification yu ∈ IC
of node u, then Informative Components Detection com-
putes a subgraph, GS , containing u, that aims to explain the
classification task by looking at the edge connectivity pat-
terns ES and their connecting nodes VS . This provides in-
sights on the characteristics of the graph that contribute to
the node’s label.

4.1 Maximal Mutual Information (MMI) Mask
Due to the properties of the GNN, (5), we only need to
consider the graph structure used in aggregation, i.e., the
computational graph w.r.t. node u is defined as Gc(u) con-
taining N ′ nodes, where N ′ ≤ N . The node feature set
associated with the Gc(u) is Xc(u) = {xv|v ∈ Vc(u)}.
For node u, the label prediction of GNN Φ is given by
ŷu = Φ(Gc(u), Xc(u)), which can be interpreted as a dis-
tribution PΦ(Y |Gc, Xc) mapping by GNN. Our goal is to
identity a subgraph GS ⊆ Gc(u) (and its associated fea-
tures XS = {xw|w ∈ VS}, or a subset of them) which the
GNN uses to predict u’s label.

Using ideas from Information theory (Cover and Thomas
2012) and following GNNExplainer (Ying et al. 2019), the
informative explainable subgraph and nodes features subset
are chosen to maximize the mutual information (MI):

max
GS

I(Y, (GS , XS))=H(Y |G,X)−H(Y |GS , XS). (7)

Since the trained GNN node classifier Φ is fixed, the H(Y)
term of Eq.(7) is constant. As a result, it is equivalent to
minimize the conditional entropy H(Y |GS , XS):

−EY |GS ,XS
[logPΦ(Y |GS , XS)]. (8)

Therefore, the explanation to the graph components with
prediction power w.r.t node u’s prediction ŷu is a subgraph
GS and its associated feature set XS , that minimize (8).
Thus, the objective of the explanation is to pick the top in-
formative edges and its connecting neighbours, which form
a subgraph, for predicting u’s label. Because, some edges
in u’s computational graph Gc(u) might form important
message-passing (5) pathways, which allow useful node in-
formation to be propagated across Gc(u) and aggregated at
u for prediction; while some edges in Gc(u) might not be
informative for prediction. Instead of directly optimize GS

in (8), since there are exponentially many discrete structures
GS ⊆ Gc(u) containingN ′ nodes, the GNNExplainer (Ying
et al. 2019) optimizes a mask MN ′×N ′

sym [0, 1] on the binary
adjacent matrix, which allows gradient descent to be per-
formed on GS .

If we use the edge weights for node embedding, the con-
nection can be treated as binary and fit into the original
GNNExplainer. However, if we use edge weights as filter-
ing, the mask should affect filtering and normalization. We
extend the original GNNExplainer method by considering
edge weights and improving the method by adding extra reg-
ularization. Unlike GNNExplainer, where there are no con-
straints on the mask value, we add constraints to the value
learned by the mask∑

w

Mvwevw = 1, Mvw ≥ 0, for (v, w) ∈ Ec(u), (9)

and perform a projected gradient decent optimization.
Therefore, rather than optimizing a relaxed adjacency ma-
trix in GNNExplainer, we optimize a mask M ∈ [0, 1]Q

on weighted edges, supposing there are Q edges in Gc(u).
Then EMc = Ec�M, where � is element-wise multiplica-
tion of two matrix. The masked edge EMc is subject to the
constraint that EMc [v, w] ≤ Ec[v, w], ∀(v, w ∈ Ec(u). Then
the objective function can be written as:

min
M
−

C∑
c=1

I[y = c] logPΦ(Y |Gc = (Vc, Ec �M), Xc).

(10)

In GNNExplainer, the top k edges may not form a connected
component including the node (say u) under prediction i.
Hence, we added the entropy of the (Ec � M)vu for ev-
ery node v pointing to node u’ as a regularization term,

Algorithm 1 Optimize mask for weighted graph
Input: 1. Gc(u), computation graph of node u; 2. Pre-

trained GNN model Φ; 3. yu, node u’s real label; 4. M,
learn-able mask; 5. K, number of optimization iterations; 6.
L, number of layers of GNN.

1: M← randomize parameters . initialize,M∈ [0, 1]Q

2: h
(0)
v ← xv , for v ∈ Gc(u)

3: for k = 1 to K do
4: Mvw ← exp(Mvwevw)∑

v exp(Mvwevw) . renormalize mask
5: for l = 1 to L do
6: m

(l)
vu ←W

(l−1)
1 h

(l−1)
v . message

7: M
(l)
u ←

∑
v g(Mvum

(l)
vu,h

(l−1)
u) . aggregate

8: h
(l)
u ← σ(W0h

(l−1)
u +M

(l)
u) . update

9: end for
10: ŷu ← softmax(h

(L)
u) . predict on masked graph

11: loss← crossentropy(yu, ŷu) + regularizations
12: M← optimizer(loss,M) . update mask
13: end for

Return:M

to ensure that at least one edge connected to node u is se-
lected. After mask M is learned, we use a threshold to re-
move small Ec �M and isolated nodes. Our proposed op-
timization methods to optimize M maximizing mutual in-
formation (equation (7)) under above constrains is shown in
Algorithm 1.

4.2 Guided Gradient (GGD) Salience
Guided gradient-based explanation methods(Simonyan,
Vedaldi, and Zisserman 2013) is perhaps the most straight
forward and easiest approach. By simply calculate the differ-
entiate of the output with respect to the model input then ap-
ply norm, a score can be obtained. The gradient-based score
can be used to indicate the relative importance of the input
feature, since it represent the change in input space which
corresponds to the maximizing positive rate of change in the
model output. Since egde weights have performed as filter-
ing in GNN, we can obtain the edge mask as

gEvu = ReLU(
∂ŷcu
∂evu

) (11)

where c ∈ {1, . . . , C} is the correct class of node u, and
yuu is the score for class c before softmax layer. where xv is
node v’s feature. Here, we select the edges whose gE is in
the top k largest ones and their connecting nodes. The advan-
tage of contrastive gradient salience method is easy to com-
pute. However, it was argued that recently that it generally
perform worse than newer techniques ((Zhang et al. 2018;
Selvaraju et al. 2017)).

4.3 Edge Weighted Graph Attention (E-GAT)
The Graph Attention Layer takes a set of node features
H(l−1) = {h(l−1)

1 ,h
(l−1)
2 , · · · ,h(l−1)

N }, xi ∈ RF as in-
put, and maps them to H(l) = {h(l)

1 ,h
(l)
2 , · · · ,h(l)

N }, h
(l)
i ∈

Rd(l)

. The idea is to compute an embedded representation

of each node v ∈ V , by aggregating its 1-hop neighbor-
hood nodes {h(l−1)

v ,∀v ∈ N (u)} following a self-attention
mechanism Att: Rd(l) × Rd(l) → R (Veličković and oth-
ers 2018). Different from the original (Veličković and oth-
ers 2018), we leverage the edge weights of the underlying
graph. The modified attention αvu ∈ R can be expressed as
a single feed-forward layer of xv and xw with edge weight
evu:

α(l−1)
wv = Att(Wah

(l−1)
w ,Wah

(l−1)
v) (12)

= LeakyReLU((a)ᵀ[Wah
(l−1)
w ‖Wah

(l−1)
v])ewv,

(13)

where α is the attention weight on v → u and indicates
the importance of node j’s features to node i. It allows ev-
ery node to attend all the other nodes on the graph based on
their node features, weighted by the underlying connectivity.
The Wa ∈ Rd(l)×d(l−1)

is a learnable linear transformation
that maps each node’s feature vector from dimension d(l−1)

to the embedded dimension d(l). The attention mechanism
Att is implemented by a nodal attributes learning vector
a ∈ R2d(l)

and LeakyRelu with input slope = 0.2. For ex-
planation purpose, in order to make coefficients comparable
cross different edges, we normalized the weights across the
source nodes:

α̃vw =
αvw∑

w∈N(v) αvw
(14)

where T (v) is the target nodes set where v points to. Then,
there will be an attention embedding layer before graph con-
volutional layer:

h(l)
v =

∑
w∈N (v)

α̃(l−1)
vw Wah

(l−1)
w . (15)

Then we average the attention over the layers.

4.4 Culturing Node Class Sensitivity
For each node u, we computed the sensitivity of labeling it
as class i ∈ {0, . . . , C − 1} with respect to all nodes in the
computational graph v, w ∈ Vc(u) \ u

ReLU(‖ ∂ŷ
1
u

∂xv
‖) . . . ReLU(‖∂ŷ

C
u

∂xv
‖)

...
. . .

...
Relu(‖ ∂ŷ1

u

∂xw
‖) . . . ReLU(‖ ∂ŷ

C
u

∂xw
‖)

 , (16)

then we clustered each row vector of the previous matrix, to
obtain the set of neighbour nodes that have same contribu-
tion pattern to classify node u to each of class i ∈ IC .

This method can be used to validate if the nodes on in-
formative subgraph have the same node feature sensitivity.
Also, it can show the similarity between the neighbors in
Gc.

5 Evaluation Metrics and Methods
For synthetic data, we can compare explanation with data
generation rules. However, for real data, we do not have

ground truth for the explanation. In order to evaluate the re-
sults, we propose the evaluation metrics for quantitatively
measuring the explanation results and propose the correla-
tion methods to validate if edge connection patter or node
feature is the crucial factor for classification. We define
metrics consistency, contrastivity and sparsity (Here, def-
inition of contrastivity andsparsity are different from the
ones in(Pope et al. 2019)) to measure informative compo-
nent detection results. Firstly, To measure the similarity be-
tween graphs, we introduce graph edit distance (GED) (Abu-
Aisheh et al. 2015), which is a graph similarity measure
analogous to Levenshtein distance for strings. It is defined
as minimum cost of edit path (sequence of node and edge
edit operations) transforming graph G1 to graph isomorphic
to G2. In case the structure is isomorphic but edge weights
are different. If GED=0, Jensen-Shannon Divergence (JSD)
(Nielsen 2010), is added on GED to further compare the two
isomorphic subgraphs. Specifically, we design consistency
as the GED between the informative subgraphs of the node
in the same class, as whether the informative components
detected for the node in the same class are consist; and de-
sign contrastivity as the GED across the informative sub-
graphs of the node in the same class, as and whether the
informative components detected for the node in the differ-
ent class are contrastive; Sparsity is defined as the density of
mask

∑
evw∈Gc(u) Υvw/Q,Υ ∈ {M, gE}, as the density of

component edge importance weights.

6 Experiments
Note that, the color codes for all the figures below follow the
on denoted in Figure 2. The red node is the node we try to
classify and explain.

6.1 Synthetic Data
Data Following (Ying et al. 2019), we generated a
Barabási–Albert (BA) graph with 15 nodes and attached 10
five-node house-structure graph motifs are attached to ran-
dom nodes, ended with 65 nodes in Figure 2. We created
a small graph for visualization purpose. However, the ex-
periment results held for large graphs. Several natural and
human-made systems, including the Internet, citation net-
works, social networks, and banking payment system can be

Figure 2: Synthetic BA-house graph data and correspond-
ing edge weights, each BA node belongs to class ”0,” and
each ”house” shape node belongs labeled ”1-3” based on its
motif. The node orders are denoted.

Figure 3: Informative Components. Row a)-c), w = 0.1.
Row a) is for the node in class one not connecting to class
0 nodes using MMI mask. Row b) is for the node in class
one connecting to class 0 nodes using MMI mask. Row c) is
for the node in class one connecting to class 0 nodes using
GGD. Row d) is for the node in class one connecting to class
0 nodes using E-GAT. Row e) is for the node in class one
connecting to class 0 nodes using MMI mask, but w = 2.

Table 1: Saliency component compared with ’house’ shape
(Measuring on all the nodes in class 1 with w = 0.1)

Method MMI mask GGD E-GAT

AUC 0.932 0.899 0.667

thought to be approximately a BA graph, which certainly
contains few nodes (hubs) with unusually high degree and a
big number of nodes poorly connected. The edges connect-
ing with different node pairs were assigned different weights
denoted in Figure 2 as well, where w was an edge weight we
will discuss later. Then, we added noise to synthetic data by
uniformly randomly adding 0.1N edges, where N was the
number of nodes in the graph. In order to constrain the node
label is determined by motif only, all the node feature xi was
designed the 2-D node attributes with the same constant.

GNN Training We use g = ēvum
(l)
vu in Eq. (4). The

parameters setting are input dim = 2, hidden dim = 8,
num layers = 3 and epoch =300. We randomly split 60%
of the nodes for training and the rest for testing.

Results GNN achieved 100% and 96.7% accuracy on
training and testing dataset correspondingly. We performed
informative component detection (kept top 6 edges) and
compare them with human interpretation – the ’house
shape,’ which can be used as a reality check (Table 1). In
Figure 3, we showed the explanation results of the node in
the same place but has different topology structure (row a &
b) and compared how eight weights affected the results (row
a & e). We also showed the results generated by different
methods (row a & c & d).

We showed a clustering results of node 20 on SynComp in
Figure 4. Node 21 − 24 were clustered together (visualized

on 2-D space by T-SNE (Maaten and Hinton 2008) in Figure
4 (a)), since they were most sensitive to predicting node 20
to class 1, which matched the informative components (4
(b)) shown in main paper. The other clusters grouped the
nodes in Gc(u) by their saliency sensitive to a certain class
in {0, 2, 3}.

This method can be used to validate if the nodes on in-
formative subgraph have the same node feature sensitivity.
Also, it can show the similarity between the neighbors in
Gc.

Figure 4: Node class sensitivities clustering (a) and compar-
ing with informative subgraph (b). Node orders are denoted
as numbers and node labels are denoted as colors.

6.2 Bitcoin OTC Data
Bitcoin is a cryptocurrency that is used for trading anony-
mously. There is counterparty risk due to anonymity. We
use Bitcoin dataset ((Kumar et al. 2018)) collecting in one
month, where Bitcoin users rate the level of trust to the users
they made transactions to. The rating scales are from -10 to
+10 (except for 0). According to OTC’s guideline, the higher
the rating, the more trustworthy. We labeled the users whose
rating score had at list one negative score as risky; the users
whose more than half received ratings were greater than one
as trustworthy users; the users who did not receive any rat-
ing scores as an unknown group; and the rest of the users
were assigned to the neural group. We chose the rating net-
work data at a time point, which contained 1447 users, 5739
rating records. We renormalized the edge weights to [0, 1]
by ẽij = eij/20 + 1/2. Then we trained a GNN on 90%
unknown, neutral and trustworthy node, 20% risky node,
those nodes only, and perform classification on the rest of
the nodes. We chose g as a GRU gate and the other set-
tings are setting are hidden dim = 32, num layers = 3 and

Figure 5: Informative subgraph detected by MMI mask
(showing the original rating scores on the edges).

Figure 6: Examples of informative components for account matching.

epoch =1000. Learning rate was initialized as 0.1, and de-
creased half per 100 epochs. We achieved accuracy 0.730 on
the training dataset and 0.632 on the testing dataset. Finally,
we showed the explanation result using MMI mask since it
is more interpretable (see Figure 5) and compared them with
possible human reasoning ones. The pattern of the informa-
tive component of the risky node contains negative rating;
the major ratings to a trustworthy node are greater than 1;
and for the neutral node, it received lots of rating score 1.
The informative components match the rules of how we la-
bel the nodes.

6.3 Bank Transaction Data - Account Matching
We use a database of 1000 international payment transac-
tion records, that involve four parties, the originating (ORG)
account, the sending (SND) bank, the receiving (RCV)
bank and the beneficiary (BEN) account. Each party plays
a role in the transaction, and the set of possible roles is
I4 = {ORG, SND, RCV, BEN}. The task is to classify each
node as being either an account (ORG or BEN) or a bank
(SNF or RCV), since the input graph data is noisy. For this,
we build a transaction graph using the payment data, nodes
are accounts of banks; the transactions between the nodes
are the directed edges in the graph; and transaction amounts
are the edge features. Furthermore, each node is associated
with categorical features (’party ID type’ and ’country’).
We used one hot encoding to convert the node features to
10× 1 vectors, and edge features were normalized to [0, 1].
We labeled 10% of the data and trained a GNN to classify
each account as a bank and costumer account. We use the
same GNN architecture as described in synthetic data exper-
iments, and use Adam optimization method with fixed learn-
ing rate 0.01 and trained the model for 100 epochs until con-
vergence. The accuracy of node classification task achieved
is 100%. Using our explanation algorithm, we present a vi-
sualization of the informative components detected for each
account type - costumer account or bank account in Figure
6.

For the above two real datasets, we measured consis-
tency, contrastivity, and sparsity by selecting the top 4 edges.
Since when attention layer was added in GNN, we could
not achieve good classification results in the real datasets,
we only applied MMI mask and GGD methods for infor-
mative components detection in the real data. The measure-
ment of MMI mask and GGD methods are listed in Table 2.
The higher contrastility values compared with consistency
value, shows GNN replied on data topolgy information for
node classification and nodes in the same class have similar

Table 2: Evaluate informative components
(Average on all the correctly classified nodes)
Dataset Consistency Contrastivity Sparsity
BitCoin 1.79 3.23 0.126

MMI Account 1.25 1.93 0.021
Bitcoin 2.17 2.90 0.124

GGD Account 1.44 1.89 0.095

topology structure. Low spasity values indicate the informa-
tive components have high information entropy, showing the
potential of the explanation methods to extract informative
patterns from the financial data.

7 Conclusion
In this work, we formulate the transaction data in financial
system as a weighted directed graph. We apply explanation
methods on weighted graph in GNN node classification task,
which can provide subjective and comprehensive explana-
tions of data interaction patterns used in GNN. We also pro-
pose evaluation metrics and methods to validate the expla-
nation results. The explanations may benefit debugging, fea-
ture engineering, informing human decision-making, build-
ing trust, etc. Our future work will include extending the
explanation to graphs with multi-dimensional edge features
and explaining different graph learning tasks, such as link
prediction and graph classification.

References
Abu-Aisheh, Z.; Raveaux, R.; Ramel, J.-Y.; and Martineau,
P. 2015. An exact graph edit distance algorithm for solving
pattern recognition problems.
Baldassarre, F., and Azizpour, H. 2019. Explainability tech-
niques for graph convolutional networks. arXiv preprint
arXiv:1905.13686.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.
Cover, T. M., and Thomas, J. A. 2012. Elements of informa-
tion theory. John Wiley & Sons.
Gong, L., and Cheng, Q. 2019. Exploiting edge features
for graph neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 9211–
9219.

Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in Neu-
ral Information Processing Systems, 1024–1034.
Kipf, T. N., and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907.
Kumar, S.; Hooi, B.; Makhija, D.; Kumar, M.; Faloutsos, C.;
and Subrahmanian, V. 2018. Rev2: Fraudulent user predic-
tion in rating platforms. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining,
333–341. ACM.
Maaten, L. v. d., and Hinton, G. 2008. Visualizing data using
t-sne. Journal of machine learning research 9(Nov):2579–
2605.
Nielsen, F. 2010. A family of statistical symmetric di-
vergences based on jensen’s inequality. arXiv preprint
arXiv:1009.4004.
Pope, P. E.; Kolouri, S.; Rostami, M.; Martin, C. E.; and
Hoffmann, H. 2019. Explainability methods for graph con-
volutional neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
10772–10781.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European Semantic
Web Conference, 593–607. Springer.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE International Conference on Com-
puter Vision, 618–626.
Shang, C.; Liu, Q.; Chen, K.-S.; Sun, J.; Lu, J.; Yi, J.; and
Bi, J. 2018. Edge attention-based multi-relational graph
convolutional networks. arXiv preprint arXiv:1802.04944.
Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2013. Deep
inside convolutional networks: Visualising image classifica-
tion models and saliency maps.
Veličković, P., et al. 2018. Graph attention networks. In
ICLR.
Yang, H.; Li, X.; Wu, Y.; Li, S.; Lu, S.; Duncan, J. S.; Gee,
J. C.; and Gu, S. 2019. Interpretable multimodality em-
bedding of cerebral cortex using attention graph network for
identifying bipolar disorder. MICCAI 671339.
Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec,
J. 2019. Gnn explainer: A tool for post-hoc explanation of
graph neural networks. arXiv preprint arXiv:1903.03894.
Zhang, J.; Bargal, S. A.; Lin, Z.; Brandt, J.; Shen, X.; and
Sclaroff, S. 2018. Top-down neural attention by excita-
tion backprop. International Journal of Computer Vision
126(10):1084–1102.
Zhang, Z.; Cui, P.; and Zhu, W. 2018. Deep learning on
graphs: A survey.
Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li,
C.; and Sun, M. 2018. Graph neural networks: A review of
methods and applications.

